الثانوية التأهيلية أيت باها	لبسم الله الرحمان الرحيم	الأستاذ : رشيد جنكل
نيابة أشتوكة أيت باها	فرض محروس رقم 3 الدورة الثانية	القسم: أولى علوم رياضية
المدة: ساعتان، التاريخ: 2015 / 05 / 28	السنة الدراسية: 2014 / 2014	المادة: الفيزياء والكيمياء

نُعطى الصيغ الحرفية (مع الناطير) قبل النطبيقات العددية

الفيزياء (13,00 نقطة) (70 دقيقة)

التنقبط

1 ن

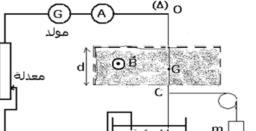
1,5 ن

1,5 ن

1 ن

1,25 ن

0,25 ن


1,25 ن

1,25 ن

> التمرين الأول: دراسة قوة لبلاص و قياس شدة المجال المغنطيسي (6,5 نقطة) (30 دقيقة)

لقياس شدة مجال مغنطيسي B نستعمل التركيب التجريبي التالي و المتكون من

سلك نحاسي OH طوله L غير قابل للتشويه يمكنه الدوران حول محور أفقي وثابت (Δ) يمر من النقطة O ويوجد جزء من السلك في حيز من مجال مغنطيسي منتظم عرضه d=10c.

نمرر في السلك تيار كهربائي شدته I فينحرف السلك بالنسبة لموضع توازنه الرأسي . لإعادة السلك إلى مو ضع توازنه الرأسي نطبق عليه في النقطة C حيث $C = \frac{2}{3}$ مدود كتلته مهملة ويمر بمجرى بكرة و يحمل في طرفه الحر كتلة معلمة أنظر الشكل جانبه

 ${f C}$ عند النقطة ${f T}$ المطبقة على السلك عند النقطة ${f C}$

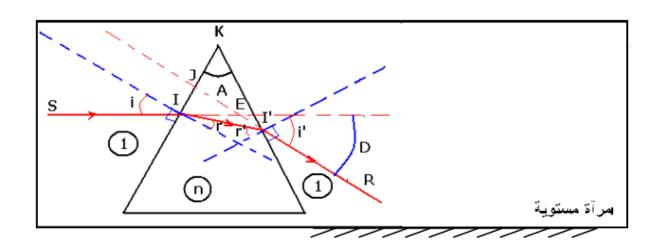
حدد مميزات قوة لبلاص، ثم استنتج منحى التيار الكهربائي في السلك OH مع ذكر القاعدة المطبقة

3. بتطبیق مبرهنة العزوم علی السلك النحاسی OH بین أن تعبیر الكتلة m بدلالة g و g و g شدة مجال الثقالة هو : $m = \frac{3}{4} \cdot \frac{B.d.I}{g}$

4. لقياس الشدة B نغير قيمة الكتلة المعلمة m، ونقيس بالنسبة لكل قيمة شدة التيار الكهربائي اللازمة على التوازن الرأسي للساق. يمثل الجدول أسفله النتائج التجريبية المحصل عليها:

75	60	45	30	15	m الكتلة المستعملة ب (g)
10	8	6	4	2	I شدة التيار بـ (A)

 $1 ext{cm}
ightarrow 1A$ ، $2 ext{cm}
ightarrow 15 g$. باستعمال السلم منحنى الدالة $\mathbf{m} = \mathbf{f} \left(\mathbf{I} \,
ight)$. $\mathbf{m} = \mathbf{f} \left(\mathbf{I} \,
ight)$


4-2- أوجد مبيانييا

أ. قيمة المعامل الموجه k باستعمال الوحدات العالمية للقياسات واستنتج شدة المجال المغنطيسي B.

m I=5A ب. قيمة الكتلة المعلمة m m اللازمة لإعادة التوزان الرأسى للسلك عندما تكون شدة التيار

بعد اجتيازها للموشور حيث تتعرض لظاهرة فيزيائية مرتين (عند I و 'I) كما يبين الشكل أسفله

التمرين الثاني: دراسة ظاهرتي الإنكسار والإنعكاس لحزمة ضوئية (6,5 نقطة) (45 دقيقة) نعتبر موشورا من زجاج (متساوي الأضلاع) معامل إنكساره n وقيمته زاويته 60° . 60° . ونجاجي فتنحرف هذه الحزمة ترد حزمة ضوئية حمراء منبعثة من جهاز اللازر على أحد أوجه الموشور بزاوية ورود 60° ، زجاجي فتنحرف هذه الحزمة

1. ما إسم هذه الظاهرة محددا أسماء المقادير التالية: i' ، r' ، r ، i

2. ذكر بقانون الأول لديكارت والقانون الثاني لديكارت لهذه الظاهرة عند النقط I و 'I علما ان n هو معامل انكسار الزجاج و 'n

Site: www.chtoukaphysique.com Gmail: Prof.jenkalrachid@gmail.com Page 1

معامل إنكسار الهواء 3. بين أن $A = r + r^2$ و $D = i + i^2 - A$ حيث $D = i + i^2$ زاوية الإنحراف و A زاوية الموشور (إستعن بالشكل الهندسي :المثلثات وقواعد الزوايا) 4. معامل إنكسار الموشور الخاص بالموجة الضوئية الحمراء المستعملة في هذه التجربة هو $n=1,637$ ومعامل إنكسار الهواء						1 ن
هو $n'=1$ 1.4 بتطبيق القانون الثاني لديكارت عند النقطة I أحسب r ثم إستنتج r' i' بتطبيق القانون الثاني لديكارت عند النقطة i' أحسب i' أحسب i' إستنتج زاوية الإنحراف I' ثم أرسم الشكل I' 3.4						
$n=rac{\sin{(rac{A+D_m}{2})}}{\sin{(rac{A}{2})}}$ يكون الإنحراف دنويا D_m عندما تكون $i=i$ و $r=r$ بين ان معامل إنكسار الموشور هو D_m عندما تكون i_M عندما تكون i_M متوازية مع قاعدة الموشور . حدد قيمتي زاوية الورود i_M و زاوية الانعكاس r_M . مثل الشعاعين الوارد و المنعكس على المرآة m						
		4 دقيقة)	مياء (7,00 نقط) (5	ب الكي		التنقيط
رائز الكشف	نط) الصيغة العامة والمجموعة	ة (1,25 نق الطائفة التي ينتمي إليها	ميزة للمركبات العضوير الكتابة الطوبولوجية	•	 ◄ الجزء الأول: ם 1. أنقل وأتمم الجدول صيغة المركب 	ن1,25
	المميزة	V. / •				
			ОН			
				4-مثيل بنتان-2- أون		
						1 ن
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \Box A,25 $ الجزء الثالث: الأكسدة المعتدلة للكحولات ($A,25$ نقط) نعتبر المركب A , كحول مشبع غير حلقي كتلته المولية $A,30$ A و صيغته العامة $A,30$ و صيغته العامة $A,30$ المركب $A,30$ مختلف المتماكبات . $A,30$ المنشورة و أصناف مختلف المتماكبات . $A,30$ و على المنشورة و أصناف مختلف المتماكبات . $A,30$ و المختلة لأحد المتماكبات, بواسطة محلول ثناني كرومات البوتاسيوم في وسط حمضي , فنحصل على مركب عضوي $A,30$ و لا يؤثر على محلول فيهلين . نعطي $A,30$ $A,30$ و اعظ اسم المركب $A,30$ و المركب $A,30$ و المنتدلة المتماكب المتفاعل ثم أكتب المعادلة الحصيلة لتفاعل الأكسدة اختزال . و أعط اسم المركب $A,30$ و وسط حمضي , $A,30$ و المركب عضوي $A,30$ و المركب عضوي $A,30$ و المركب عضوي $A,30$ و المركب و المركب $A,30$ و المركب و						ύ0,25ύ1,5ύ1,25ύ1,25

حظ سميه للجهيع

الله ولي النوفيق

يضيح العلسم بين إثنينالحيساء والكبسر

Page 2