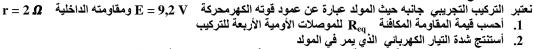
الثانوية التاهيلية أيت باها	سلسلسة رقم 1 الدورة الثانية	الأستاذ: رشيد جنكل
نيابة اشتوكة أيت باها	 ا،تقال الطاقة في دارة كهربائية ، التصرف العام لدارة كهربائي 	القسم: السنة الأولى من سلك البكالوريا
السنة الدراسية :2013/2014	 تتبع تطور تحول كيمياني ، المواصلة والمصلية 	الشعبة: علوم تجريبية: 1 ع 1 و 1 ع 2

🌣 الفيزيـ

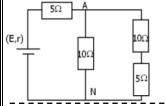
◄ التمرين الأول:

 ${f r}'=0.1$. ${f r}'=0.1$ ومقاومته الداخلية ${f E}'=1.6$ V فعتبر محللا كهربائيا قوته الكهرمحركة المضادة

- - $I_2=8~A$. ما التوتر الذي يجب أن نطبقه للحصول على هذه الشدة $I_2=8~A$. ما التوتر الذي يجب أن نطبقه للحصول على هذه الشدة $I_2=8~A$
 - أحسب القدرة الكهربائية المكتسبة من طرف المحلل الكهربائي والقدرة الكهربائية المبددة بمفعول جول
 - 4. أستنتج مردود المحلل الكهربائي
 - 5. نريد أن يتهلك المحلل قدرة كهربائية تساوي W 15,5 W ما هو التوتر الكهربائي الذي يجب تطبيقه ؟
 - ho' = 100 % ما الشرط الذي يجب أن يتوفر لكى يصبح مردود المحلل ho' = 100 % ؟


 $\mathbf{r} = 50~\mathbf{\Omega}$ ومقاومته الداخلية وته الكهرمحركة $\mathbf{E} = 15~\mathbf{V}$

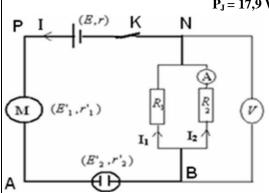
- $U_{PN} = 10~V$ مدة التيار الكهربائي الذي يمر في المولد ، علما أن التوتر المطبق بين مربطيه هو $U_{PN} = 10~V$
 - أحسب القدرة P_I المبددة في المولد بمفعول جول
 - 3. أحسب القدرة الكلية للمولد
 - 4. إستنتج مردود المولد


نعتبر الدارة الكهربائية التالية التى تحتوي مولد قوته الكهرمحركة ${f E}=12~{f V}$ ومقاومته الداخلية ${f r}=2~{f \Omega}$. يغدي محركا كهربانيا قوته الكهرمحركة المضادة ${f E}'=3{f V}$ ومقاومته الداخلية ${f r}'=1,5$ مركب على التوالي مع موصلين $R_2 = 12$ و $R_1 = 8$ و ميين مركبين على التوازي مقاومتاهما على التوالى $R_1 = 8$ و

- R_2 و R_1
- أحسب الشدة الرئيسية للتيار الكهربائي الذي يمر في الدارة الكهربائية
 - أحسب القدرة الكهربائية التي يمنحها المولد للدارة
 - أحسب القدرة الكهربائية المكتسبة من طرف المحلل .4
- ${f R}_2$ في يمر ${f R}_1$ الذي يمر ${f R}_1$ وشدة التيار الكهربائي ${f I}_2$ الذي يمر في ${f R}_2$
 - 6. أحسب القدرة الكليةة المبددة بمفعول جول في الدارة

◄ التمرين الرابع:

- 3. عبر عن القدرة الكهربائية الممنوحة من طُرف المول بدلالة Reg و r و E ثم أحسب قيمتها
 - ${f R}_{
 m eq}$ = ${f r}$ عند تتحق العلاقة ${f P}_{
 m emax}={E^2\over 4R_{
 m eq}}$: بين أن ${f P}_{
 m e}$ تأخد قيمة قصوى .4


◄ التمرين الخامس:

نعتبر الدارة الكهربائية التالية:

عند غلق قاطع التيار الكهرباني X لمدة زمنية Mt = 15 min مشير الأمبيرمتر إلى القيمة A 8,0 ، ويشير الفولطمتر إلى القيمة V 4,8 وتصبح الطاقة $m P_J = 17.9~W$: النافعة في المحرك $m Wu_1' = 6048~J$ وتصبح القدرة الحرارية المبددة بمفعول جول في الدرة

 $r_2' = 3 \Omega \cdot E_2' = 4 V \cdot R_1 = 15 \Omega \cdot r_1' = 2 \Omega :$ نعظی

- I. أوجد شدة التيار I_1 وإستنتج شدة التيار I
- ${f R}_2$ و ${f R}_1$ و ${f R}_2$ و ${f R}_1$ و ${f R}_2$ أوجد قيمة المقاومة المكافئة للمقاومة ${f R}_2$ م إستنتج قيمة و
 - 3. أوجد قيمة r المقاومة الداخلية للمولد
- 4. أحسب قيمة Pu'_2 القدرة النافعة في المحلل الكهربائي. ثم إستنتج قيمة $P_{
 m T}$ القدرة الكلية
 - 5. إستنتج E القوة الكهرمحركة للمولد
 - أوجد بطريقتين مختلفتين E'_1 القدرة الكهرمحركة المضادة للمحرك
- 7. بتطبيق مبدأ إنحفاظ الطاقة في الدارة أحسب wu_2' الطاقة المخزونة في المحلل الكهربائي
 - ho_t إستنتج مردود المولد ho والمردود الكلي ho

(E',r')

(E,r)

الله ولي النوفيق حظ سميه للجهيع

Site: www.chtoukaphysique.com Gmail: prof.jenkalrachid@gmail.com