الثانوية التاهيلية أيت باها	سلسلسة رقم 2 الدورة الثانية	الأستاذ : رشيد جنكل
نيابة اشتوكة أيت باها	 الميكانيك : جميع الدروس 	القسم: السنة الثانية من سلك البكالوريا
السنة الدراسية :2014/2015	 التحولات التلقائية في الأعمدة وتحصيل الطاقة / الأسترة والحلمأة 	الشعبة : علوم تجريبية ، ع ح أ

🌣 الفيز بـ

التمرين الأول: دراسة سقوط بسرعة بدئية

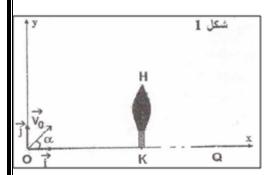
نقذف عند t=0 من نقطة Λ تبعد عن السطح الأفقي بالمسافة t=0 و بسرعة متجهتها رأسية $\overrightarrow{v_0}$ كرية نحو الأعلى. نفترض أن أبعاد الكرية صغيرة جدا بحيث يمكن إهمال تأثيرات الهواء عليها و أن المسار يكون رأسيا منطبقا مع المحور (oz) الموجه

- أوجد تعبير a_z إحداثي متجهة التسارع على المحور (oz) . -1
- أكتب تعبير $V_z(t)$ تعبير إحداثي متجهة السرعة بدلالة الزمن. -2
 - أكتب تعبير (z(t) أنسوب الكرية بدلالة الزمن. -3
- ما قيمة ${
 m V}_0$ لكي تصل الكرية إلى ارتفاع ${
 m H=45m}$ عن السطح الأفقى؟
 - ما المدة الزمنية التي تستغرقها الكرية لتصل هذا الإرتفاع؟

← التمرين الثاني: دراسة حركة مستوية

تخضع كرة الغولف المستعملة في المسابقات الرسمية لمجموعة من المواصفات الدولية و يتميز سطحها الخارجي بعدد كبير من الأسناخ تسّاعد على إختراق كرة الغولف للهواء بسهولة و التقليل من احتكاكاته. خلال حصة تدريبية ، و في غياب الرياح ، حاول لاعب الغولف البحث عن الشروط البدئية التي ينبغي أن يرسل بها كرة الغولف من نقطة O ،كي تسقط في حفرة Q دون أن تسطدم بشجرة علوها KH توجد بينهما. النقطة O و الموضع K للشجرة و الحفرة Q على نفس الاستقامة.

معطيات: كتلة كرة الغولف m=45g ، شدة مجال الثقالة 2-g=10m.s


. OQ=120m , OK=15m , KH=5m

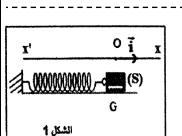
 $\overline{V_0}$ عند اللحظة (t=0) ، أرسل اللاعب كرة الغولف من النقطة O بسرعة بدئية $V_0 = 40 {
m m.s}^{-2}$ تكون متجهتها الزاوية $\alpha=20^\circ$ مع المستوى الأفقي . لدراسة حركة G مركز قصور الكرة في المستوى الرأسي ، نختار معاما متعامدا ممنضما (o,i,j) أصله مطابق للنقطة O .

- بتطبيق القانونُ الثاني لنيوتن ، أتبتُ المعادلتين التفاضليتين اللتين تحققهما $\mathbf{V}_{ ext{v}}$ و $\mathbf{V}_{ ext{v}}$ إحداثيتي متجهة سرعة G مركز قصور الكرة.
 - . G أوجد التعبير الحرفي للمعادلتين الزمنيتين $\mathbf{y}(t)$ و $\mathbf{y}(t)$ لحركة
 - استنتج التعبير الحرفى لمعادلة مسار الحركة. -3
- نعتبر نقطة g من مسأر مركز قصور الكرة أفصولها $x_B = x_K = 15$ و أرتوبها y_B . أحسب y_B . هل تصطدم الكرة بالشجرة؟
- بالنسُّبة للزاوية °24= لا تصطدم الكرة بالشجرة . حدد قيمةً V_0^{*} السَّرعة البدئيَّة التي ينبغيُّ أن يرسل بها اللاعب كرة الغولف كي تسقط في الحفرة Q . -5

M₅ •B

5.5 cm

◄ التمرين الثالث: دراسة حركة جسم على مستوى مائل


تتحرك كرية كتلتها m=800g على مسار ABC حيث:

- جزء مستقيمي مائل بزاوية $lpha=30^\circ$ بالنسبة للمستوى الأفقى AB
- . Θ =45° حيث r=10cm و شعاعها O جزء من دائرة مركزها BC

. ${
m V_A}=0,4{
m m/s}$ تنطلق الكرية من النقطة ${
m A}$ بسرعة بدئية.

نسجل حركة الكرية على الجزء AB فنحصل على التسجيل الممتل في الشكل جانبه. نعتبر لحظة انطلاق الكرية في الموضع M_1 أصلا للتواريخ $t=0~{
m ms}$

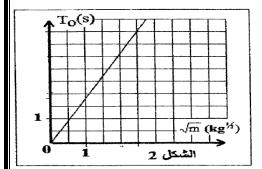
- . M_4 و M_2 النقطتين M_2 و M_4 المرعة اللحظية للكرية في النقطتين
 - 2- استنتج قيمة a₃ تسارع مركز قصور الكرية. ما طبيعة حركة الكرية؟ علل جوابك.
 - اوجد المعادلة الزمنية للكرية
 - بين أن الحركة تتم باحتكاك على الجزء AB. -5
- احسب شدة قوة الإحتكاكات f التي نعتبرها ثابتة طول القطعة AB . -6
- بتطبيق القانون الثاني لنيوتن أوجد المركبة المنظمية R_N للقوة التي يطبقها الجزء AB على الكرية.
 - . $k=tan\phi$ استنتج قيمة شدة القوة \overrightarrow{R} و معامل الإحتكاك .
 - 9- احسب بطريقتين مختلفتين سرعة الكرية عند النقطة B.
 - 10- نهمل الإحتكاكات على الجزء BC.
 - . $_{
 m C}$ -1-10 اوجد سرعة الكرية عند النقكة $_{
 m C}$
- . m C استنتج في أساس فريني التسارع المنظمي $m a_N$ لتسارع مركز قصور الكرية عند النقطة -2-10
 - 3-10 بتطبيق القانون التاني لنيوتن أوجد:
 - شدة القوة التي يطبقها الجزء BC على الكرية.
 - . C التسارع المماسي a_T عند النقطة
 - $g = 10 \text{ m/s}^2$:

 $\tau = 50ms$

2,5 cm

منحى الحركة

4,5 cm


◄ التمرين الرابع: الدراسة الحركية والطاقية للنواس المرن الأفقى

الدراسة الحركية للنواس المرن:

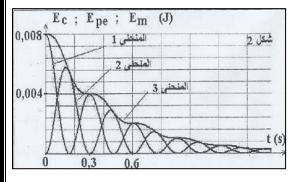
خلال حصة للأشغال التطبيقية ، طلب الأستاذ من تلاميذ 2ع حأ دراسة المجموعة المتذبذبة (جسم صلب - نابض) ، قصد تحديد صلابة النابض لل وإبراز سلوك المجموعة من الناحية الطاقية .

تتكون المجموعة المتذبذبة من جسم صلب (S) مركز قصوره G وكتلته m ، مثبت بطرف نابض أفقى لفاته غير متصلة وكتلته مهملة وصلابته K . الجسم (S) قابل للإنزلاق بدون إحتكاك فوق نضد هوائي أفقي كما يبين الشكل جانبه

تمت إزاحة الجسم (S) أفقيا عن موضع توازنه بالمسافة $\mathbf{d}=5~\mathrm{cm}$ في المنحى الموجب للمعلم (\mathbf{c} , \mathbf{c}) وتحريره

 $(x_G=0)$ منعدما $(x_G=0)$ منعدما وي بدون سرعة بدئية عند اللحظة t=0 عند التوازن يكون افصول

- 1. بتطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية التي يحققها أفصول مركز قصور الجسم (x(t
 - 2. ما طبيعة الحركة
 - $x(t)=X_m cos(rac{2\pi}{T_0}\,t+arphi$) : يكتب حل المعادلة التفاضلية السابقة على الشكل التالي . $X_m cos(rac{2\pi}{T_0}\,t+arphi)$. $X_m cos(rac{2\pi}{T_0}\,t+arphi)$
 - 4. أوجد تعبير T₀
- 5. لدراسة تاثير الكتلة m على قيمة الدور الخاص T_0 للمتذبذب ، قام تلاميذ 2 ع أ 1 بقياس T_0 بالنسبة لأجسام ذات كتل m مختلفة . مكنت النتائج التجريبية المحصلة من تمثيل تغيرات T_0 بدلالة m ، بين أن قيمة صلابة النابض هي T_0 T_0 بين أن T_0 قيمة صلابة النابض هي T_0 بين أن T_0 بين أن


 - $\mathbf{x}(t)$ أ. أحسب قيمة \mathbf{T}_0 ثم اكتب التعبير العددي ل
 - ب. استنتج te لحظة مرور الجسم (S) لأول مرة من موضع التوازن
- ج. اكتب تعبير x سرعة G مركز قصور الجسم (S) ثم إستنتج قيمة x عند مرور الجسم (S) لأول مرة من موضع توازنه
 - $\mathbf{t} = \frac{T_0}{2}$ د. أحسب قيمة التسارع $\ddot{\mathbf{x}}$ لمركز قصور الجسم \mathbf{G} عند اللحظة
- 7. باعتبار مستوى الحركة (المستوى الأفقي المار من G) مرجعا لطاقة الوضع الثقالية E_{Pp} وباعتبار موضع التوازن حالة مرجعية لطاقة الوضع المرنة E_{Pe} ،أعط تعبير الطاقة الميكانيكية E_{Pe} ثم احسب قيمتها
 - E_{m} تحقق من المعادلة التفاضلية باشتقاق الطاقة الميكانيكية 8
 - 9. في أي موضع تكون سرعة الجسم قصوية ثم أحسب v_{max} قيمة هذه السرعة
 - $t=1{
 m s}$ المرنة وقيمة الطاقة الحركية للجسم عند اللحظة المركية للجسم عند اللحظة

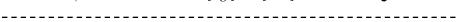
يمثل المنحى الممثل جانبه تغيرات الطاقة الحركية ${
m E_C}$ و طاقة الوضع المرنة ${
m Ep}_{
m e}$ و الطاقة الميكانيكية ${
m E}_{
m m}$ للنواس المرن كتلته ${
m m}=92$ ${
m g}$ بدلالة الزمن. نعتبر عند أصل التواريخ أن أفصول مركز قصور الجسم هو ${
m ac}_{
m +}$.

- . احسب الدور الخاص T₀ للمجموعة المتنبنبة علما أن المتنبنب ينجز 10 نبنبات في 6 ثوان.
 - 2. أحسب صلابة النابض K
 - E_{m} و E_{C} و $E_{p_{e}}$ و الممثل لكل من E_{c} و الممثل و E_{c}
 - T_0 دور $T_{\rm e}$ وقارنهما مع الدور الخاص $T_{\rm e}$ دور عين كل من $T_{\rm C}$ دور $T_{\rm e}$
 - . \mathbf{E}_{m} فسر تناقص الطاقة الميكانيكية
- $t=0,3~{
 m s}$ و جد قيمة شغل القوة المطبقة من طرف النابض على الجسم (${
 m S}$) بين اللحظتين و ${
 m t}=0$

 $(\mathbf{W}(\vec{T}) = -\Delta E_{Pe})$ (تذکیر:

Na⁺, Cl

فنطرة أيونية


اكبم الكيم

التمرين الخامس: عمود نحاس - فضة

 $IF = 9,65 .10^4 \, C. \, mol^{-1}$ نعطي: $I = -20 \, mA$ ننجز التركيب التالي ، فيشير الأمبيرمتر إلى قيمة سالبة

 1. أنقل التركيب التجريبي إلى ورقتك وبين عليه قطبية العمود ، محددا منحى التيار الكهربائي معللا جوابك ، ثم استنتج منحى مختلف حملات الشحنات (الالكترونات والايونات)

- 2. ما دور القنطرة الأيونية؟
- اعط نصفي معادلتي التفاعل عند كل الكترود
- (عند الكترود النحاس و عند الكترود الفضة) ، ثم استنتج الانود والكاتود معللا جوابك؟
 - 4. استنتج المعادلة الحصيلة للتفاعل ، ثم اعط الجدول الوصفى لهذا التفاعل
- $_{\rm C}$ علما أن للمحلولين نفس التركيز $_{\rm C}$ ، عبر عن خارج التفاعل البدئي $_{\rm C}$ للمعادلة بدلالة $_{\rm C}$
- 6. علما أن هذا العمود يشتغل لمدة min 30 min. أحسب كمية الكهرباء الممنوحة خلال مدة الاشتغال
 - أحسب قيمة تقدم التفاعل x بعد تمام مدة الاشتغال
- m V=200~mL علما أن للمحلولين نفس الحجم $m \Delta \ [Cu^{2+}]$ علما أن للمحلولين نفس الحجم m V=200~mL

◄ التمرين السادس: الأسترة والحلمأة

يؤدي تفاعل حمض البوتانويك مع الميثانول الى تكون مركب عضوي ${f E}$ والماء

- 1. اعط الصيغ النصف المنشورة لكل من حمض البوتانويك والميثانول
- 2. بماذا يسمى هذا التفاعل ؟ أكتب معادلة هذا التفاعل ، اعط اسم المركب E
- . اعط مميزات هذا التفاعل ، ثم اقترح طريقتين مختلفتين لتحسين مردود هذا التفاعل
 - 4. لنحصل على تفاعل كلي وسريع نستبدل حمض البوتانويك باندريد البوتاويك ،
 - أكتب معادلة تفاعله مع الميثانول

 $(-0.2^{2+} + SO^{2-})^{\frac{1}{2}}$

◄ تمارين الكتاب المدرسي" المفيد في الكيمياء "

- تمارين: 5، 6، 7، 8، 9، 0، 0 ص 127، 128: التحولات التلقائية في الأعمدة وتحصيل الطاقة
- تمارين: 11 ، 12 ، 15 ، 16 ص 154 و 168: تفاعلات الأسترة والحلماة ، التحكم في تطور المجموعة الكيميائية

من لم يسهره العلم أياما أسهره الجهس أعواما ..

Site: www.chtoukaphysique.com Gmail: prof.jenkalrachid@gmail.com