
Prof : JENKAL RACHID	Travaux pratiques	Établissement : LYCÉE AIT BAHA
Matière : PHYSIQUE et CHIMIE	• Les ondes mécaniques progressives	Direction provinciale : CHTOUKA
Niveau : 2 BAC	 Les ondes mécaniques progressives 	AIT BAHA
Filières : PC et SVT	périodiques	Année scolaire : 2017 / 2018

Expérience : Étudier la propagation d'une onde ultrasonore

❖ Manipulation 1 : Mesure de la longueur d'onde

Protocole:

- Disposer, le long d'une réglette graduée, une source et un récepteur d'ondes ultrasonores
- Brancher la source à un générateur basse fréquence
- Visualiser, sur une voie de l'oscilloscope, la tension alimentant la source et, sur l'autre voie, le signal délivré par le récepteur.
- Choisir une fréquence, au voisinage de 40 kHz, qui donne une amplitude maximale du signal détecté
- Déplacer le récepteur le long de la règle graduée pour amener les signaux en phase. Repérer la position du récepteur.
- Déplacer à nouveau le récepteur en comptant dix positions où les signaux sont en phase. repérer la position du récepteur
 - 1. Mesurer la période temporelle de l'onde ultrasonore
 - 2. Mesurer la longueur d'onde
 - 3. En déduire la vitesse de propagation de cette onde
 - 4. Les ondes ultrasonores se propagent-elles à la même vitesse que les ondes sonores audibles ?

❖ Manipulation 2 : Étude quantitative de la diffraction par une fente

Protocole:

- Réaliser, à l'aide de deux écrans en carton ou en métal, une fente de 50 cm de hauteur et de 1 cm de largeur.
- Placer la source d'ondes ultrasonores face à la fente, à environ 50 cm de celle-ci.
- Placer le récepteur derrière la fente, face à celle-ci, à 50 cm.
- Mesurer l'amplitude $U_{m\,(max\,)}$ du signal détecté
- Déplacer le récepteur, d'un angleθ, sur un arc de cercle centré sur la fente, puis mesurer tous les 10° la valeur de U_m
- Regrouper les résultats dans un tableau

· ·								
$ heta^\circ$	0	10	20	30	40	50	60	70
$U_{max}(v)$								

- 1. Tracer le graphique représentant $\frac{U_m}{U_{m(\max)}}$ en fonction de θ
- 2. À partir de quelle valeur de , le rapport est-il inférieur à 0,5 ?

❖ Manipulation 3 : Étude de l'influence de la largeur de la fente

> Protocole:

• Déterminer, pour différentes largeurs a de la fente (4 mm,2 cm, 5 cm), les valeurs de l'angle θ pour lesquelles le rapport $\frac{u_m}{u_{m(\max)}}$ est inférieur à 0,5

a (mm)	4	10	20	50
$ heta^\circ$				

1. Pourquoi affirme-t-on que le phénomène de diffraction devient important lorsque a est de l'ordre, ou devient inférieure, à la longueur d'onde ?