
الثانوية التأهيلية أيت باها	لبسم الله الرحمان الرحيم	الأستاذ: رشيد جنكل
نيابة أشتوكة أيت باها	فرض محروس رقم 2 الدورة الأولى	القسم: السنة الأولى من سلك البكالوريا
المدة: ساعتان: 2017 / 12 / 12	السنة الدراسية : 2018 / 2017	الشعبة: علوم رياضية

تعطى الصيغ الحرفية (مع التاطير) قبل التطبيقات العددية يسمح بأستعمال الألة الحاسبة العلمية غير القابلة للبرمجة

الفيزياء (13.00 نقطة) (80 دقيقة) التنقيط ♣ التمرين الأول: الدراسة الحركية والطاقية للنواس الوازن (7,00 نقط) يتكون نواس وازن من عارضة AB متجانسة طولها L = 40 cm و كتلتها m=600g قابلة للدوران حول محور (Δ) ثابت يمر عموديا . $J_{\Delta} = \frac{1}{2} \text{ mL}^2$ من طرفها . نعطی عزم قصور العارضة نزىح العارضة عن موضع توازنها المستقر ($oldsymbol{ heta}=0$) بزاوية $oldsymbol{ heta}=60$ و نحررها بدون سرعة E_PP بدئية . نأخد المستوى الأفقى المار من G_0 حالة مرجعية لطاقة الوضع الثقالية نعتبر الإحتكاكات مهملة. $g = 10 \text{ N.Kg}^{-1}$ ناخد شدة مجال الثقالة 1. نعبر عن طاقة الوضع الثقالية للعارضة AB بالعلاقة التالية : $Z_G + C$ وعبر عن طاقة الوضع الثقالية للعارضة 1ن $oldsymbol{ heta}$ و g و g و دد الثابتة C مم استنتج تعبير و E_{PP} بدلالة E_{PP} 0,75ن 2. حدد الموضع الذي تاخد فيه طاقة الوضع الثقالية للعارضة قيمة قصوية ثم إستنتج قيمة كل من الطاقة الحركية E_{c} الطاقة الميكانيكية E_{m} عند هذا الموضع 1 ن $m{ heta}$ = - 30° ، $m{ heta}$ = - 60° ، $m{ heta}$ = 30° ، $m{ heta}$ = 0° . أحسب 0,75ن 4. حدد قيم الطاقة الحركية للعارضة عند هذه المواضع 0,75ن 5. مثل مخطط الطاقة لكل من $E_{ m PP}$ و $E_{ m PP}$ (تغيرات الطاقة بدلالة الزاوية $m{ heta}$) في نفس المنحني ، في ورق مليميتري 0,5ن حدد الموضع الذي تاخد فيه السرعة الزاوية للعارضة قيمة قصوية .احسب قيمتها 0,5ن $V_B = 2,45 \, \text{m.s}^{-1}$. بين أن سرعة الطرف B عند مرور العارضة من موضع توازنها المستقر هي $V_0' = 0.6 \, \text{m/s}$ القيمة G_0 المحظة مروره من G_0 القيمة G_0 المحظة عطى قياس سرعة G_0 المحظة مروره من 0,5ن 1.8 بين ان دوران العارضة حول المحور (Δ) يتم بأحتكاك 0,5ن Q الطاقة المفقودة على شكل طاقة حرارية ، بين لحظة إنطلاق العارضة ولحظة مرورها من Q ، بسبب Qالاحتكاكات 0,75ن 8. 3 بين أن عزم مزودة الإحتكاك الذي نعتبره ثابتا بين الحالة البدئية والحالة التي توافق مرور العارضة بموضع توازنها المستقر $\mathcal{M}_f = 4{,}35.10^{-1}$ N.m هو 井 التمرين الثاني : الدراسة الحركية والطاقية لجسم فوق السكة ABCD (6,00 نقط) نعتبر سكة ABCD توجد في مستوى رأسي و التي تتكون من جزء مستقيمي ABمائل بزاوية °lpha بالنسبةللمستوى الأفقي ومماسفي النقطة B لجزء دائري مركزه O وشعاعه R.السطح الأفقى مماس في النقطة C للجزء الدائري.

نعلق جسما صلبا (S) كتلته m=0.8~Kg بخيط غير مدود كتلته مهملة، ملفوف حول مجرى بكرة (P) شعاعها r=2~cm قابلة للدوران حول محور (Δ) أفقي وثابت يمر من مركزها .الخيط لا ينرلق على مجرى البكرة. كما ان الجسم ينزلق بدون احتكاك على السكة نعطي : عزم قصور البكرة بالنسبة للمحور (Δ) $J_{\Delta}=2.10^{-4}~Kg/m^2$ (Δ) و g=10~N/Kg و

1. دراسة حركة الجسم (S) على الجزء IB :		
نرسل الجسم (S) من الموضع A فنلاحظ أن سرعته على الجزء IB تبقى ثابتة V=2 m/s.		
1.1 أحسب شغل وزن الجسم (S) عند انتقاله من الموضع ا إلى الموضع B.		
1. 2 بين أن تعبير توتر الخيط هو: T = m.g. sinα.		
3.1 ذكر بمبدأ القصور		
القصور أوجد شدة القوة \overrightarrow{R} المطبقة من طرف الجزء \overline{R} المطبقة من طرف الجزء كا (قم باسقاط القوى على محور توجد عليه القوة		
5.1 بتطبيق مبرهنة الطاقة الحركية على البكرة ، بين أن تعبير العزم M لمزدوجة الاحتكاك المطبقة على البكرة والذي نعتبره		
ثابتا أثناء الانتقال IB هو: M = - m.r.g sin $oldsymbol{lpha}$ ، أحسب قيمة		
2. دراسة حركة الجسم (S) على الجزء الدائري		
عند النقطة B ينفصل الجسم (S) عن الخيط ويتابع حركته على الجزء الدائري من السكة. نأخذ السطح الأفقي الذي يمر من		
النقطة) مرجعا لطاقة الوضع الثقالية.		
2. 1 أوجد تعبير الطاقة الميكانيكية Em للجسم (S) في الموضع B بدلالة m و g و V و Ω و R		
2.2 حدد قيمة R شعاع الجزء الدائري، علما أن سرعة الجسم (S) تنعدم عند النقطة Dالتي توجد في نفس المستوى الأفقي		
مع المركز 0		
♦ الكيمياء (7,00 نقطة) (40 دقيقة)	التنقيط	
التعديد الثالث والمالة تتعدم الكالمالة التعديد الثالث والمالة التعديد التعديد الثالث المالة التعديد التعديد ال		
♣ التمرين الثالث: دراسة تتبع تحول كيميائي • التمرين الثالث: دراسة تتبع تحول كيميائي		
 ♦ الجزء الأول : : الرابطة التساهمية المستقطبة و الميزة الثنائية القطبية (1,5 نقط) 		
نعتبر الجزيئات التالية : كالم		
HH O=c=o		
كبريتور الهيدروجين ثنائي أوكسيد الكربون الأمونياك		
نعطي سلم كهرسلبية الذرات: تزايد الكهرسلبية		
H CNSO		
1. هل الروابط التساهمية في هذه الجزيئات مستقطبة ؟ علل جوابك		
2. حدد بالنسبة لكل جزيئة مرجح الشحن الموجبة ومرجح الشحن السالبة ءثم استنتج الجزئيات التي لها ميزة ثنائية قطبية		
 ♦ الجزء الثاني : حساب التراكيز المولية الفعلية للأنواع الكيميائية الموجودة في محلول ما (5,5 نقط) 		
1. نذيب في الماء الخالص كتلة m=1,6g من كبريتات الحديد III، (SO ₄) _{3(s)} ، فنحصل على محلول مائي (S) حجمه V=100mL.		
ا اكتب معادلة ذوبان كبريتات الحديد III علما ان النواتج F_e^{3+} و F_e^{3+}		
1. 2 احسب n ₀ كمية المادة البدئية للمذاب المستعمل		
1. 3 استنتج C التركيز المولي للمحلول		
n_0 قعبير كمية مادة النهائية للنوع الكيميائي F_e^{3+} في المحول بدلالة n_0 تعبير كمية مادة النهائية للنوع الكيميائي		
2. نأخذ المحلول (S) ونغمر فيه صفيحة من الحديد كتلها البدئية m ₀ =196mg، عند نهاية التحول، بعد مرور مدة زمنية معينة،		
نلاحظ تغير لون المحلول إلى اللون الأخضر المميز للأيونات (ep²-(aq) و اختفاء لون الصدأ المميز للأيونات (eq) .		
$2Fe^{3+}_{(aq)}+ \; Fe_{(s)} o 3Fe^{2+}_{(aq)}$ معادلة التفاعل المنمذج لهذا التحول الكيميائي هي:		
1.2 احسب كمية مادة المتفاعلات في الحالة البدئية.		
2.2 أنشئ الجدول الوصفي		
2.2 حدد التقدم الأقصى و المتفاعل المحد.		
4.2 احسب التراكيز المولية النهائية للأنواع الكيميائية في المحلول.		
. M(Fe) = 56 g.mol ⁻¹		

ألبرت اينشتاين: "عليك أن تتعلم قواعد اللعبة أولاً، ثم عليك أن تتعلم كيف تلعب أفضل من الآخرين" حظ سعيد للجميع